

    
      
          
            
  
Introduction

Metran is a package for performing timeseries analysis on multiple
timeseries using dynamic factor models.

When modeling multiple groundwater time series within the same hydrological
system, it often appears that these components show distinct correlations between
locations. Usually large part of the correlation is caused by common input
stresses like precipitation and evapotranspiration, which shows up within
the deterministic components of the models.

The residual components of the univariate TFN models are often correlated as
well. This means that there is spatial correlation which has not been captured
by the deterministic component, e.g. because of errors in common input data or
due to simplification of the hydrological model leading to misspecification of
the deterministic component. We can exploit these correlations by modeling the
series simultaneously with a dynamic factor model. Dynamic factor modeling
(DFM) is a multivariate timeseries analysis technique used to describe the
variation among many variables in terms of a few underlying but unobserved
variables called factors.
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Getting Started

This page explains how to get started with Metran.


Installing Metran

To install Metran, a working version of Python 3.7 or 3.8 has to be installed on
your computer. We recommend using the Anaconda Distribution with Python 3.7 as
it includes most of the python package dependencies and the Jupyter Notebook
software to run the notebooks. However, you are free to install any
Python distribution you want.

To install metran, use:

pip install metran





To install in development mode, clone the repository, then type the following
from the module root directory:

pip install -e .







Basic usage

To use Metran, import the metran package:

import metran





Create Metran model by passing a list of timeseries (measured heads, or
timeseries of the residuals of e.g. Pastas timeseries models).

list_of_series  # this is a list of series, i.e. [series1, series2, ...]

mt = metran.Metran(list_of_series)





To solve the model and determine the specific an dynamic factors:

mt.solve()





Plotting a simulation for one of the the timeseries:

ax = mt.plots.simulation("series1")









            

          

      

      

    

  

    
      
          
            
  
Concepts

The following notebook explains the basic concepts of multivariate timeseries
analysis using a technique called dynamic factor modelling as implemented in
Metran.



	The Dynamic Factor Model








            

          

      

      

    

  

    
      
          
            
  
The Dynamic Factor Model


[1]:





import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import metran

metran.show_versions()













Python version: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0]
numpy version: 1.26.4
scipy version: 1.12.0
pandas version: 2.0.3
matplotlib version: 3.8.3
pastas version: 1.3.0
numba version: 0.59.0
lmfit version: 1.2.2






Tip: To run this notebook and the related metran model, it is strongly recommended to install Numba (http://numba.pydata.org). This Just-In-Time (JIT) compiler compiles the computationally intensive part of metran model.


When modeling multiple groundwater time series within the same hydrological system, it often appears that these components show distinct correlations between locations. Usually large part of the correlation is caused by common input stresses like precipitation and evapotranspiration, which shows up within the deterministic components of the models.

The residual components of the univariate TFN models are often correlated as well. This means that there is spatial correlation which has not been captured by the deterministic component, e.g. because of errors in common input data or due to simplification of the hydrological model leading to misspecification of the deterministic component. We can exploit these correlations by modeling the series simultaneously with a dynamic factor model. Dynamic factor modeling (DFM) is a multivariate
timeseries analysis technique used to describe the variation among many variables in terms of a few underlying but unobserved variables called factors.

This notebook explains the Dynamic Factor Model (DFM) as presented in Berendrecht and Van Geer, 2016. It describes the model, model parameters and how the results may be interpreted.


1. Basic multivariate AR(1) model

A general univariate AR(1) model can be written as:


\[\begin{split}\begin{align}
 {x}_t&=\phi x_{t-1}+\eta_t\\
 {n}_t&={x}_t+\varepsilon_t
\end{align}\end{split}\]

with \(\phi\) the AR(1) parameter, \(\eta_t\) a zero mean white noise process, and \(\varepsilon_t\) the measurement noise. In the current version of metran the measurement noise is assumed to be zero, so that \(n_t=x_t\).

The multivariate extension of this model is:


\[\begin{split}\left[\begin{array}{c}x_{1}\\x_{2}\end{array}\right]_t = \left[\begin{array}{cc}\phi_{1} & 0\\0 & \phi_{2}\end{array}\right] \left[\begin{array}{c}x_{1}\\x_{2}\end{array}\right]_{t-1} + \left[\begin{array}{c}\eta_{1}\\\eta_{2}\end{array}\right]_t\end{split}\]

Or:


\[\mathbf{x}_t=\mathbf{\Phi} \mathbf{x}_{t-1}+\mathbf{\eta}_t\]



2. Generate synthetic correlated time series

Let us generate time series based on the 2-dimensional model given above. We use the AR(1) model to generate three time series with the AR(1) parameter \(\phi\): two series as the specific dynamic factor and one series as the common dynamic factor. Combining the specific and common dynamic factors results in two time series which are mutually correlated.


[2]:





# seed numpy.random
np.random.seed(20210505)

# define mean and scale (standard deviation for noise series)
mean = np.zeros(3)
scale = [1, 0.6, 2]

# generate noise series that are mutually uncorrelated
noise = np.random.multivariate_normal(mean, np.diag(np.square(scale)), 2001)

# generate AR(1) processes
phi = np.array([0.80, 0.95, 0.90])
a = np.zeros_like(noise)
for i in range(1, noise.shape[0]):
    a[i] = noise[i] + np.multiply(a[i - 1], phi)

# add AR(1) processes to construct two correlated series
s1 = np.add(a[1:, 0], a[1:, 2])
s2 = np.add(a[1:, 1], a[1:, 2])

s = pd.DataFrame(
    data=np.array([s1, s2]).T,
    index=pd.date_range(start="1-1-2000", periods=2000),
    columns=["series 1", "series 2"],
)

s.plot(figsize=(10, 2), xlabel="Date")












[image: ../_images/concepts_dynamic_factor_models_7_0.png]




We can calculated the mean and standard deviation of the generated series and test the correlation between these series. The correlation must be close to the desired correlation defined above.


[3]:





print("Mean:")
print(s.mean())
print("\nStandard deviation:")
print(s.std())
print("\nCorrelation:")
print(s.corr())













Mean:
series 1   -0.847064
series 2   -0.868526
dtype: float64

Standard deviation:
series 1    4.769178
series 2    4.928326
dtype: float64

Correlation:
          series 1  series 2
series 1  1.000000  0.872126
series 2  0.872126  1.000000








3. The Dynamic Factor Model

With the Dynamic Factor Model (DFM) we try to decompose series into latent (unobserved) factors describing common and specific dynamics. For the example above, the common dynamic factor describe the all variation that is found in both series. The remaining part of each series is described by the specific dynamic factor.

Mathematically, this can be written as:


\[\begin{split}\left[\begin{array}{c}n_{1,t}\\n_{2,t}\end{array}\right] = \left[\begin{array}{c}x_{s,1}\\x_{s,2}\end{array}\right]_t + \left[\begin{array}{c}\gamma_{1}\\ \gamma_{2}\end{array}\right] x_{c,t}\end{split}\]

where \(\gamma_1\) and \(\gamma_2\) are the factor loadings for series 1 resp. series 2. These factor loadings describe how the series \(n_1\) and \(n_2\) are related to the common dynamic factor.

The specific dynamic factors \(x_s\) and common dynamic factor \(x_c\) can be described by an AR(1) model as:


\[\begin{split}\begin{align}
\mathbf{x}_{s,t}&=\left[\begin{array}{cc}\phi_{s,1} & 0\\0 & \phi_{s,2}\end{array}\right]\mathbf{x}_{s,t-1}+\left[\begin{array}{c}\eta_{s,1}\\\eta_{s,2}\end{array}\right]_t\\
x_{c,t}&=\phi_c x_{c,t-1}+\eta_{c,t}
\end{align}\end{split}\]

The model can also be written in a single matrix notation as:


\[\begin{split}\begin{align}
\mathbf{x}_{t}&=\Phi \mathbf{x}_{t-1}+\mathbf{\eta}_{t}\\
\mathbf{n}_{t}&=\mathbf{Z} \mathbf{x}_{t}
\end{align}\end{split}\]

with the state vector $ \mathbf{x}`=:nbsphinx-math:left[begin{array}{c}x_{s,1}\x_{s,2}\x_{c,1}end{array}right]`$, the transition matrix \(\mathbf{\Phi}=\left[\begin{array}{ccc}\phi_{s,1} & 0 & 0\\0 & \phi_{s,2} & 0\\0 & 0 & \phi_{c}\end{array}\right]\), the transition noise vector \(\mathbf{\eta}=\left[\begin{array}{c}\eta_{s,1}\\ \eta_{s,2}\\ \eta_{c}\end{array}\right]\), and the observation matrix
\(\mathbf{Z}=\left[\begin{array}{ccc}1&0&\gamma_1\\0&1&\gamma_2\end{array}\right]\).

When analyzing more than two series, multiple common dynamic factors may be used. In that case, the equation for the common dynamic factor also becomes a vector equation.



4. Standardization

With the DFM we want to describe the common and specifc dynamics based on the correlation rather than the covariance structure. Therefore, all series are standardized as:


\[\tilde{n}_{i,t} = \frac{n_{i,t}-\mu_{n_i}}{\sigma_{n_i}}\]

This standardization is done internally in metran, so there is no need to perform any standardization beforehand. However, as an illustration, the code below shows the standardized series.


[4]:





mt = metran.Metran(s)
series_std = mt.standardize(s)
series_std.plot(figsize=(10, 2), xlabel="Date").set_ylim(-4, 4)












[image: ../_images/concepts_dynamic_factor_models_12_0.png]






5. Running the model

Let us now run the model for the generate time series. In this example, we solve the model with report=False. This means that no report is shown. Instead, we analyze the results step by step.


[5]:





mt = metran.Metran(s)
mt.solve(report=False)













INFO: Number of factors according to Velicer's MAP test: 1







5.1 Factors, communality and specificity

Metran first determines the optimal number of common dynamic factors based on the correlation structure of the time series. For this, the Minimum Average Partial (MAP) test is used (Velicer, 1976; Velicer et al., 2000). If this test results in 0 factors, then a second test is done based on the Kaiser criterion (Kaiser, 1960). In this case, as we can see above, 1 factor has been selected to describe the common dynamics.

Besides, Metran estimates the factor loadings \(\gamma_1\) and \(\gamma_2\) using the minimum residual (minres) algorithm (Harman and Jones, 1966).


[6]:





print("Factors:\n", mt.factors)













Factors:
 [[0.93540765]
 [0.93540765]]






As described in section 3, the factor loadings show the degree to which a factor elaborates a variable (observed series). The sum of squared factor loadings for all common factors for a given series is referred to as the communality. The communality measures the fraction of variance in a given variable explained by all common factors jointly, or in our case, one common factor.


[7]:





print("Communality:", mt.get_communality())













Communality: [0.87498746 0.87498746]






The fraction that is unique/specific for each series is referred to as the specificity and is calculated as (1 - communality).


[8]:





print("Specificity:", mt.get_specificity())













Specificity: [0.12501254 0.12501254]








5.2 Estimating AR(1) parameters

After the number of factors and associated factor loadings have been estimated, Metran uses an optimization algorithm to estimate the AR(1) model parameters \(\phi_{s,1}\), \(\phi_{s,2}\), and \(\phi_{c}\). Similar to the AR parameter is pastas, \(\phi\) is written as:


\[\phi_k=e^{−\Delta t_i/\alpha_k}\]

and \(\alpha_k\) is being estimated.

As all series have been standardized, the variance of each series is equal to 1. In addtion, we know the communality (and specificity) for each series, which means that we know the variance of the specific and common dynamic factors. As a result, the noise variance parameters of the AR(1) model do not need to be estimated. Instead, Metran calculates them as:


\[\begin{split}\begin{align}
q_{s,1} &= \left(1-\phi_{s,1}^2\right) \cdot s_1 \\
q_{s,2} &= \left(1-\phi_{s,2}^2\right) \cdot s_2 \\
q_{c} &= \left(1-\phi_{c}^2\right)
\end{align}\end{split}\]

with \(s_1\) and \(s_2\) the specificity of series 1 resp. series 2.

The results of the parameter estimation process can be shown using mt.fit_report().


[9]:





print(mt.fit_report())













Fit report Cluster              Fit Statistics
==================================================
tmin     None                   obj     2431.34
tmax     None                   nfev        4
freq     D                      AIC     2437.34
solver   ScipySolve

Parameters (3 were optimized)
==================================================
                    optimal   stderr initial  vary
series 1_sdf_alpha       10  ±10.00%      10  True
series 2_sdf_alpha       10  ±10.00%      10  True
cdf1_alpha               10  ±10.00%      10  True

Parameter correlations |rho| > 0.5
==================================================
None








5.3 Metran report

Further output of the Metran model parameters and statistics is given by mt.metran_report(). The following results are shown: - nfct: number of factors - fep: percentage of total variance explained by these factors - communality for each series: percentage of variance that a series has in common with other series. - state parameters: - AR(1) parameter \(\phi\), calculated from the optimized parameter \(\alpha\) - variance \(q\) of white noise process \(\eta\) - observation
parameters: - factor loadings \(\gamma\) for each factor and series - scale: standard deviation \(\sigma_n\) of each series (used for standardization, see section 4) - mean: mean \(\mu_n\) of each series (used for standardization, see section 4) - state correlations: correlation between specific and/or common dynamic factors


[10]:





print(mt.metran_report())













Metran report Cluster        Factor Analysis
============================================
tmin     None                nfct    1
tmax     None                fep     93.61%
freq     D

Communality
============================================

series 1      87.50%
series 2      87.50%

State parameters
============================================
                   phi         q
series 1_sdf  0.904837  0.022661
series 2_sdf  0.904837  0.022661
cdf1          0.904837  0.181269

Observation parameters
============================================
                gamma1     scale      mean
series 1      0.935408  4.769178 -0.847064
series 2      0.935408  4.928326 -0.868526

State correlations |rho| > 0.5
============================================
series 1_sdf series 2_sdf -0.88







The statistic fep is based on the eigenvalues of the correlation matrix. The eigenvalues can be retrieved from the metran class.


[11]:





mt.eigval








[11]:







array([1.87212635, 0.12787365])






The sum of the eigenvalues always equals the dimension of the correlation matrix, in this case 2.


[12]:





round(mt.eigval.sum())








[12]:







2






As we have used 1 eigenvalue (nfct = 1), the statistic fep is calculated as:


[13]:





round(100 * mt.eigval[0] / mt.eigval.sum(), 2)








[13]:







93.61









6. Checking the estimated AR(1) parameters

We can compare the estimate AR(1) parameters \(\phi\) with the AR(1) parameters used to generate the time series.


[14]:





print(np.round(np.diagonal(mt.get_transition_matrix()), 2), "vs", phi)













[0.9 0.9 0.9] vs [0.8  0.95 0.9 ]






The estimated parameters are close to those being used to generate the synthetic series, which means that the model has estimated the autoregression of the latent components well.



7. Decomposition of series

The specific dynamic components (sdf’s) \(x_{s,1}\) and \(x_{s,2}\) can be retrieved from the state vector \(\mathbf{x}\).


[15]:





mt.get_state_means().plot(
    figsize=(10, 2), xlabel="Date", title="Specific and common dynamic factors"
).set_ylim(-4, 4)












[image: ../_images/concepts_dynamic_factor_models_36_0.png]




Note that the common factor need to be multiplied by the factor loadings, to get the common factor for each series. Furthermore, these results are for the standardized series and need to be rescaled to obtain the unstandardized dynamic factors. Metran has a specific method to obtain the specific and common dynamic factors for each series.


[16]:





mt.decompose_simulation(name="series 1").plot(
    figsize=(10, 2),
    xlabel="Date",
    title="Specific and common dynamic factor for series 1",
)












[image: ../_images/concepts_dynamic_factor_models_38_0.png]




We can compare the calculated specificity with the variance of the specific dynamic component divided by the series variance (which is the sum of the specific and common dynamic factor).


[17]:





sim1 = mt.decompose_simulation(name="series 1")
sdf1_variance = sim1["sdf"].var() / sim1.sum(axis=1).var()
print("Variance sdf series 1:", "{:.2f}%".format(100 * sdf1_variance))
print("Specificity series 1 :", "{:.2f}%".format(100 * mt.get_specificity()[0]))













Variance sdf series 1: 6.82%
Specificity series 1 : 12.50%






Theoretically, these values must be equal. In practice, they may slightly differ, e.g. due to some correlation between the specific and common dynamic factor. We can test this by calculating the correlation.


[18]:





sim1.corr()








[18]:
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Examples

The following notebooks contain practical examples showing how Metran works,
how to obtain the model results and how to plot them.

The first example shows how to create Metran model and access and visualize
the output. The second example shows how Pastas model outputs can be used in
Metran.



	Metran practical example

	Pastas and Metran example








            

          

      

      

    

  

  
    
    

    Metran practical example
    

    

    
 
  

    
      
          
            
  
Metran practical example

This notebook shows a practical application of Metran on calculated residuals from univariate time series models as published in the article van Geer and Berendrecht in Stromingen (2015).


[1]:





import os

import pandas as pd

import metran

metran.show_versions()













Python version: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0]
numpy version: 1.26.4
scipy version: 1.12.0
pandas version: 2.2.0
matplotlib version: 3.7.2
pastas version: 1.4.0
numba version: 0.59.0
lmfit version: 1.2.2







Read example data

Read residuals from time series analysis models for 5 piezometers at different depths at location B21B0214. (The time series models are not shown here, only the resulting residuals.)


[2]:





residuals = {}
rfiles = [
    os.path.join("./data", f) for f in os.listdir("./data") if f.endswith("_res.csv")
]

for fi in rfiles:
    name = fi.split(os.sep)[-1].split(".")[0].split("_")[0]
    ts = pd.read_csv(
        fi, header=0, index_col=0, parse_dates=True, date_format="%Y-%m-%d"
    )
    residuals[name] = ts








[3]:





# sort names (not necessary, but ensures the order of things)
sorted_names = list(residuals.keys())
sorted_names.sort()
sorted_names








[3]:







['B21B0214001', 'B21B0214002', 'B21B0214003', 'B21B0214004', 'B21B0214005']








Create Metran model

First collect series in a list with their unique IDs.


[4]:





series = []

for name in sorted_names:
    ts = residuals[name]
    ts.columns = [name]
    series.append(ts)







Create the Metran model and solve.


[5]:





mt = metran.Metran(series, name="B21B0214")
mt.solve()













INFO: Number of factors according to Velicer's MAP test: 1













Fit report B21B0214                  Fit Statistics
=======================================================
tmin     None                        obj        2332.33
tmax     None                        nfev            77
freq     D                           AIC        2344.33
solver   ScipySolve

Parameters (6 were optimized)
=======================================================
                         optimal   stderr initial  vary
B21B0214001_sdf_alpha   5.501017  ±18.98%    10.0  True
B21B0214002_sdf_alpha  13.560042  ±10.04%    10.0  True
B21B0214003_sdf_alpha   4.682870  ±28.86%    10.0  True
B21B0214004_sdf_alpha  11.381674  ±18.22%    10.0  True
B21B0214005_sdf_alpha  13.140605   ±8.48%    10.0  True
cdf1_alpha             22.980925   ±7.43%    10.0  True

Parameter correlations |rho| > 0.5
=======================================================
None

Metran report B21B0214        Factor Analysis
=============================================
tmin     None                nfct     1
tmax     None                fep     88.32%
freq     D

Communality
=============================================

B21B0214001      73.61%
B21B0214002      87.59%
B21B0214003      93.35%
B21B0214004      91.74%
B21B0214005      81.15%

State parameters
=============================================
                      phi         q
B21B0214001_sdf  0.833781  0.080429
B21B0214002_sdf  0.928908  0.017023
B21B0214003_sdf  0.807716  0.023102
B21B0214004_sdf  0.915889  0.013316
B21B0214005_sdf  0.926724  0.026607
cdf1             0.957419  0.083349

Observation parameters
=============================================
                   gamma1     scale      mean
B21B0214001      0.857982  5.920523 -0.001924
B21B0214002      0.935874  5.565866 -0.055813
B21B0214003      0.966197  5.702295 -0.001265
B21B0214004      0.957794  5.833851 -0.033373
B21B0214005      0.900857  6.234234 -0.022840

State correlations |rho| > 0.5
=============================================
None









Visualizing and accessing Metran results

The results of the Metran can be visualized using the Metran.plots class.


Scree plot

We can draw a scree plot to visualize the eigenvalues (used in determining the number of factors).


[6]:





# Plot eigenvalues in scree plot, see e.g. Fig 2 in JoH paper
ax = mt.plots.scree_plot()












[image: ../_images/examples_ex01_metran_practical_example_10_0.png]






State means

Plot the calculated state means for each of the specific and common dynamic components:


[7]:





mt.get_state_means()








[7]:
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Pastas and Metran example

This notebook shows how output from Pastas time series models can be analyzed using Metran.


[1]:





import os

import hydropandas as hpd
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pastas as ps

import metran

ps.logger.setLevel("ERROR")

metran.show_versions()













Python version: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0]
numpy version: 1.26.4
scipy version: 1.12.0
pandas version: 2.0.3
matplotlib version: 3.8.3
pastas version: 1.4.0
numba version: 0.59.0
lmfit version: 1.2.2







Read data

Load the observed heads from piezometers at different depths at location B21B0214. The outliers (values outside of \(5 \sigma\) (std. dev.)) are removed from the time series.


[2]:





oc = hpd.read_dino("./data", subdir=".")








[3]:





oc








[3]:
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API Documentation


Metran

The Metran model class.


	
class metran.metran.Metran(oseries, name='Cluster', freq=None, tmin=None, tmax=None)

	Class for the Pastas Metran model.


	Parameters:

	
	oseries (pandas.DataFrame, list of pandas.Series or pastas.TimeSeries) – Time series to be analyzed. Index must be DatetimeIndex.
The series can be non-equidistant.


	name (str, optional) – String with the name of the model. The default is ‘Cluster’


	freq (str, optional) – String with the frequency the stressmodels are simulated. Must
be one of the following (D, h, m, s, ms, us, ns) or a multiple of
that e.g. “7D”.


	tmin (str, optional) – String with a start date for the simulation period (E.g. ‘1980’).
If none is provided, the tmin from the oseries is used.


	tmax (str, optional) – String with an end date for the simulation period (E.g. ‘2010’).
If none is provided, the tmax from the oseries is used.






	Returns:

	mt – Metran instance.



	Return type:

	metran.Metran






	
_get_file_info()

	Internal method to get the file information.


	Returns:

	file_info – dictionary with file information.



	Return type:

	dict










	
_get_matrices(p, initial=False)

	Internal method to get all matrices.

Returns all matrices required to define the Metran dynamic
factor model.


	Parameters:

	
	p (pandas.Series) – Model parameters.


	initial (bool, optional) – Determines whether to use initial (True)
or optimal (False) parameters. The default is False.






	Returns:

	
	numpy.ndarray – Transition matrix.


	numpy.ndarray – Transition covariance matrix.


	numpy.ndarray – Observation matrix.


	numpy.ndarray – Observation variance vector.















	
_init_kalmanfilter(oseries, engine='numba')

	Internal method, initialize Kalmanfilter for sequential processing.


	Parameters:

	
	oseries (pandas.DataFrame) – Series being processed by the Kalmanfilter.


	engine (str, optional) – Engine used for the Kalman filter, by default ‘numba’ which is the
fastest choice but ‘numpy’ is also available, but is slower.






	Return type:

	None.










	
_phi(alpha)

	Internal method to calculate autoregressive model parameter.

Autoregressive model parameter is calculated based on parameter
alpha.


	Parameters:

	alpha (float) – model parameter



	Returns:

	autoregressive model parameter



	Return type:

	float










	
_run_kalman(method, p=None)

	Internal method to (re)run Kalman filter or smoother.


	Parameters:

	
	method (str, optional) – Use “filter” to run Kalman filter, and
“smoother” to run Kalman smoother. The default is “smoother”.


	p (pandas.Series) – Model parameters. The default is None.






	Return type:

	None.










	
decompose_simulation(name, p=None, standardized=False, method='smoother')

	Decompose simulation into specific and common dynamic components.

Method to get for observed series filtered/smoothed estimate
decomposed into specific dynamic component (sdf) and the sum of common
dynamic components (cdf).


	Parameters:

	
	name (str) – name of series to be obtained.


	p (pandas.Series) – Model parameters. The default is None.


	standardized (bool, optional) – If True, obtain estimates for standardized series.
If False, obtain estimates for unstandardized series.
The default is False.


	method (str, optional) – Use “filter” to obtain filtered estimates, and
“smoother” to obtain smoothed estimates.
The default is “smoother”.






	Returns:

	df – DataFrame with specific and common dynamic component
for series with name ‘name’.



	Return type:

	pandas.DataFrame










	
fit_report(output='full')

	Method that reports on the fit after a model is optimized.


	Parameters:

	output (str, optional) – If any other value than “full” is provided, the parameter
correlations will be removed from the output.



	Returns:

	report – String with the report.



	Return type:

	str





Examples

This method is called by the solve method if report=True, but can
also be called on its own:

>>> print(mt.fit_report())










	
get_communality()

	Get fraction that is explained by the common dynamic factor(s).

Calculate communality for each series.


	Returns:

	For each series the communality, a value between 0 and 1.
A value of 0 means that the series has no variation
in common with other series. A value of 1 means that the
series has all variation in common.



	Return type:

	numpy.ndarray










	
get_factors(oseries=None)

	Method to get factor loadings based on factor analysis.

This method also gets some relevant results from the factor analysis
including the eigenvalues and percentage explained by factors (fep).


	Parameters:

	oseries (pandas.DataFrame, optional) – Series to be analyzed. The default is None.



	Returns:

	factors – Factor loadings as estimated using factor analysis



	Return type:

	numpy.ndarray










	
get_mle(p)

	Method to obtain maximum likelihood estimate based on Kalman filter.


	Parameters:

	p (pandas.Series) – Model parameters.



	Returns:

	mle – Maximum likelihood estimate.



	Return type:

	float










	
get_observation_matrix(p=None, initial=False)

	Method to get observation matrix of the Metran dynamic factor model.


	Parameters:

	
	p (pandas.Series, optional) – Model parameters. The default is None.


	initial (bool, optional) – Determines whether to use initial (True)
or optimal (False) parameters. The default is False.






	Returns:

	observation_matrix – Observation matrix



	Return type:

	numpy.ndarray










	
get_observation_variance()

	Method to get observation matrix.

Currently the observation variance is zero by default.


	Returns:

	observation_variance – Observation variance vector



	Return type:

	numpy.ndarray










	
get_observations(standardized=False, masked=False)

	Returns series as available in Metran class.


	Parameters:

	
	standardized (bool, optional) – If True, obtain standardized observations. If False,
obtain unstandardized observations. The default is False.


	masked (boolean) – If True, return masked observations. The default is False.






	Returns:

	Time series.



	Return type:

	pandas.DataFrame










	
get_parameters(initial=False)

	Method to get all parameters from the individual objects.


	Parameters:

	initial (bool, optional) – True to get initial parameters, False to get optimized parameters.
If optimized parameters do not exist, return initial parameters.



	Returns:

	parameters – initial or optimal parameters.



	Return type:

	pandas.Series










	
get_scaled_observation_matrix(p=None)

	Method scale observation matrix by standard deviations of oseries.


	Returns:

	
	observation_matrix (numpy.ndarray) – scaled observation matrix


	p (pandas.Series) – Model parameters. The default is None.















	
get_simulated_means(p=None, standardized=False, method='smoother')

	Method to calculate simulated means.

Simulated means are the filtered/smoothed mean estimates for
the observed series.


	Parameters:

	
	p (pandas.Series) – Model parameters. The default is None.


	standardized (bool, optional) – If True, obtain estimates for standardized series.
If False, obtain estimates for unstandardized series.
The default is False.


	method (str, optional) – Use “filter” to obtain filtered estimates, and
“smoother” to obtain smoothed estimates.
The default is “smoother”.






	Returns:

	simulated_means – Filtered or smoothed estimates for observed series.



	Return type:

	pandas.DataFrame










	
get_simulated_variances(p=None, standardized=False, method='smoother')

	Method to calculate simulated variances,

The simulated variances are the filtered/smoothed variances
for the observed series.


	Parameters:

	
	p (pandas.Series) – Model parameters. The default is None.


	standardized (bool, optional) – If True, obtain estimates for standardized series.
If False, obtain estimates for unstandardized series.
The default is False.


	method (str, optional) – Use “filter” to obtain filtered estimates, and
“smoother” to obtain smoothed estimates.
The default is “smoother”.






	Returns:

	simulated_variances – Filtered or smoothed variances for observed series.



	Return type:

	pandas.DataFrame










	
get_simulation(name, p=None, alpha=0.05, standardized=False, method='smoother')

	Method to calculate simulated means for specific series.

Optionally including 1-alpha confidence interval.


	Parameters:

	
	name (str) – name of series to be obtained


	p (pandas.Series) – Model parameters. The default is None.


	alpha (float, optional) – Include (1-alpha) confidence interval in DataFrame. The value
of alpha must be between 0 and 1.
If None, no confidence interval is returned. The default is 0.05.


	standardized (bool, optional) – If True, obtain estimates for standardized series.
If False, obtain estimates for unstandardized series.
The default is False.


	method (str, optional) – Use “filter” to obtain filtered estimates, and
“smoother” to obtain smoothed estimates.
The default is “smoother”.






	Returns:

	proj – filtered or smoothed estimate (mean) for series ‘name’,
optionally with ‘lower’ and ‘upper’ as
lower and upper bounds of 95% confidence interval.



	Return type:

	pandas.DataFrame










	
get_specificity()

	Get fraction that is explained by the specific dynamic factor.

Calculate specificity for each series. The specificity is
equal to (1 - communality).


	Returns:

	For each series the specificity, a value between 0 and 1.
A value of 0 means that the series has all variation
in common with other series. A value of 1 means that the
series has no variation in common.



	Return type:

	numpy.ndarray










	
get_state(i, p=None, alpha=0.05, method='smoother')

	Get filtered or smoothed mean for specific state.

Optionally including the 1-alpha confidence interval.


	Parameters:

	
	i (int) – index of state vector to be obtained


	p (pandas.Series) – Model parameters. The default is None.


	alpha (float, optional) – Include (1-alpha) confidence interval in DataFrame. The value
of alpha must be between 0 and 1.
If None, no confidence interval is returned. The default is 0.05.


	method (str, optional) – Use “filter” to obtain filtered variances, and
“smoother” to obtain smoothed variances.
The default is “smoother”.






	Returns:

	state – ith filtered or smoothed state (mean),
optionally with ‘lower’ and ‘upper’ as
lower and upper bounds of 95% confidence interval.



	Return type:

	pandas.DataFrame










	
get_state_means(p=None, method='smoother')

	Method to get filtered or smoothed state means.


	Parameters:

	
	p (pandas.Series) – Model parameters. The default is None.


	method (str, optional) – Use “filter” to obtain filtered states, and
“smoother” to obtain smoothed states. The default is “smoother”.






	Returns:

	state_means – Filtered or smoothed states. Column names refer to
specific dynamic factors (sdf) and common dynamic factors (cdf)



	Return type:

	pandas.DataFrame










	
get_state_variances(p=None, method='smoother')

	Method to get filtered or smoothed state variances.


	Parameters:

	
	p (pandas.Series) – Model parameters. The default is None.


	method (str, optional) – Use “filter” to obtain filtered variances, and
“smoother” to obtain smoothed variances.
The default is “smoother”.






	Returns:

	state_variances – Filtered or smoothed variances. Column names refer to
specific dynamic factors (sdf) and common dynamic factors (cdf)



	Return type:

	pandas.DataFrame










	
get_transition_covariance(p=None, initial=False)

	Get transition covariance matrix of the Metran dynamic factor model.


	Parameters:

	
	p (pandas.Series, optional) – Model parameters. The default is None.


	initial (bool, optional) – Determines whether to use initial (True)
or optimal (False) parameters. The default is False.






	Returns:

	transition_covariance – Transition covariance matrix



	Return type:

	numpy.ndarray










	
get_transition_matrix(p=None, initial=False)

	Method to get transition matrix of the Metran dynamic factor model.


	Parameters:

	
	p (pandas.Series, optional) – Model parameters. The default is None.


	initial (bool, optional) – Determines whether to use initial (True)
or optimal (False) parameters. The default is False.






	Returns:

	transition_matrix – Transition matrix



	Return type:

	numpy.ndarray










	
get_transition_variance(p=None, initial=False)

	Get the transition variance vector.

The transition variance vector is obtained by extracting the diagonal
of the transition covariance matrix.


	Parameters:

	
	p (pandas.Series, optional) – Model parameters. The default is None.


	initial (bool, optional) – Determines whether to use initial (True)
or optimal (False) parameters. The default is False.






	Returns:

	transition_variance – Transition variance vector



	Return type:

	numpy.ndarray










	
mask_observations(mask)

	Mask observations for processing with Kalman filter or smoother.

This method does NOT change the oseries itself. It only
masks (hides) observations while running the
Kalman filter or smoother, so that these observations
are not used for updating the Kalman filter/smoother.


	Parameters:

	mask (pandas.DataFrame) – DataFrame with shape of oseries containing 0 or False
for observation to be kept and 1 or True for observation
to be masked (hidden).



	Return type:

	None.










	
metran_report(output='full')

	Method that reports on the metran model results.


	Parameters:

	output (str, optional) – If any other value than “full” is provided, the state
correlations will be removed from the output.



	Returns:

	report – String with the report.



	Return type:

	str





Examples

This method is called by the solve method if report=True, but can
also be called on its own:

>>> print(mt.metran_report())










	
property nparam

	




	
property nstate

	




	
set_init_parameters()

	Method to initialize parameters to be optimized.


	Return type:

	None










	
set_observations(oseries)

	Rework oseries to pandas.DataFrame for further use in Metran class.


	Parameters:

	
	oseries (pandas.DataFrame) – 


	pandas.Series/pandas.DataFrame/pastas.TimeSeries (or list/tuple of) – Time series to be analyzed.






	Raises:

	Exception – 
	if a DataFrame within a list/tuple has more than one column
    - if input type is not correct
    - if number of series is less than 2
    - if index of Series/DataFrame is not a DatetimeIndex








	Return type:

	None.










	
solve(solver=None, report=True, engine='numba', **kwargs)

	Method to solve the time series model.


	Parameters:

	
	solver (metran.solver.BaseSolver class, optional) – Class used to solve the model. Options are: mt.ScipySolve
(default) or mt.LmfitSolve. A class is needed, not an instance
of the class!


	report (bool, optional) – Print reports to the screen after optimization finished. This
can also be manually triggered after optimization by calling
print(mt.fit_report()) or print(mt.metran_report())
on the Metran instance.


	engine (str, optional) – Engine used for the Kalman filter, by default ‘numba’ which is the
fastest choice but ‘numpy’ is also available, but is slower.


	**kwargs (dict, optional) – All keyword arguments will be passed onto minimization method
from the solver.








Notes


	The solver object including some results are stored as mt.fit.
From here one can access the covariance (mt.fit.pcov) and
correlation matrix (mt.fit.pcor).


	The solver returns a number of results after optimization. These
are stored in mt.fit.result and can be accessed from there.









	
standardize(oseries)

	Method to standardize series.

Standardized by subtracting mean and dividing by standard deviation.


	Parameters:

	oseries (pandas.DataFrame) – series to be standardized



	Returns:

	standardized series



	Return type:

	pandas.DataFrame










	
test_cross_section(oseries=None, min_pairs=None)

	Method to test whether series have enough cross-sectional data.

Default threshold value is defined by self.settings[“min_pairs”].


	Parameters:

	
	oseries (pandas.DataFrame, optional) – Time series to be evaluated. The default is None.


	min_pairs (int, optional) – Minimum number of cross-sectional data for each series.
Should be greater than 1. The default is None.






	Raises:

	Exception – If one of the series has less than min_pairs of cross-sectional
    data and exception is raised.



	Return type:

	None.










	
truncate(oseries)

	Method to set start and end of series.

If tmin and/or tmax have been defined in self.settings, use
these dates to trucate series. Dates with only NaN are being removed.


	Parameters:

	oseries (pandas.DataFrame) – series to be tructated



	Returns:

	truncated series



	Return type:

	pandas.DataFrame










	
unmask_observations()

	Method to unmask observation and reset observations.


	Return type:

	None















Factor Analysis

FactorAnalysis class for Metran in Pastas.


	
class metran.factoranalysis.FactorAnalysis(maxfactors=None)

	Class to perform a factor analysis for the Pastas Metran model.


	Parameters:

	maxfactors (int, optional.) – maximum number of factors to select. The default is None.





Examples

A minimal working example of the FactorAnalysis class is shown below:

>>> fa = FactorAnalysis()
>>> factors = fa.solve(oseries)






	
get_eigval_weight()

	Method to get the relative weight of each eigenvalue.


	Returns:

	All eigenvalues as a fraction of the sum of eigenvalues.



	Return type:

	numpy.ndarray










	
solve(oseries)

	Method to perform factor analysis.

Factor analysis is based on the minres algorithm.
The number of eigenvalues is determined by MAP test.
If more than one eigenvalue is used,
the factors are rotated using orthogonal rotation.


	Parameters:

	oseries (pandas.DataFrame) – Object containing the time series. The
series can be non-equidistant.



	Raises:

	Exception – If no proper factors can be derived from the series.



	Returns:

	factors – Factor loadings.



	Return type:

	numpy.ndarray















Kalman Filter

This module contains the Kalman filter class for Metran and associated
filtering and smoothing methods.


	
class metran.kalmanfilter.SPKalmanFilter(engine='numba')

	Kalman filter class for Metran.


	Parameters:

	engine (str, optional) – Engine to be used to run sequential Kalman filter.
Either “numba” or “numpy”. The default is “numba”.



	Returns:

	kf – Metran SPKalmanfilter instance.



	Return type:

	kalmanfilter.SPKalmanFilter






	
decompose(observation_matrix, method='smoother')

	Method to decompose simulated means.

Decomposition into specific dynamic factors (sdf) and common
dynamic factors (cdf).


	Parameters:

	
	observation_matrix (numpy.ndarray) – Observation matrix for projecting states.


	method (str, optional) – If “filter”, use Kalman filter to obtain estimates.
If “smoother”, use Kalman smoother. The default is “smoother”.






	Returns:

	
	sdf_means (list) – List of specific dynamic factors for each time step.


	cdf_means (list) – List of common dynamic factor(s) for each time step.















	
get_mle(warmup=1)

	Method to calculate maximum likelihood estimate.


	Parameters:

	warmup (int, optional) – Number of time steps to skip. The default is 1.



	Returns:

	mle – Maximum likelihood estimate.



	Return type:

	float










	
init_states()

	Method to initialize state means and covariances.


	Return type:

	None.










	
run_filter(initial_state_mean=None, initial_state_covariance=None, engine=None)

	Method to run the Kalman Filter.

This is a sequential processing implementation of the Kalman filter
requiring a diagonal observation error covariance matrix.
The algorithm allows for missing data using the arrays
observation_count giving the number of observations for each timestep,
and observation_indices containing the corresponding indices
of those observations used to select the appropriate rows
from observation_matrix and observation_variance.
These arrays have been constructed with self.set_observations()


	Parameters:

	
	initial_state_mean (array_like) – state vector for initializing Kalman filter.


	initial_state_covariance (array_like) – state covariance matrix for initializing Kalman filter.


	engine (str, optional) – Engine to be used to run sequential Kalman filter.
Either “numba” or “numpy”. The default is None, which
means that the default Class setting is used.






	Return type:

	None










	
run_smoother()

	Run Kalman smoother.

Calculate smoothed state means and covariances using the Kalman
smoother.






	
set_matrices(transition_matrix, transition_covariance, observation_matrix, observation_variance)

	Method to set matrices of state space model.


	Parameters:

	
	transition_matrix (numpy.ndarray) – State transition matrix


	transition_covariance (numpy.ndarray) – State transition covariance matrix.


	observation_matrix (numpy.ndarray) – Observation matrix.


	observation_variance (numpy.ndarray) – Observation variance.






	Return type:

	None.










	
set_observations(oseries)

	Construct observation matrices allowing missing values.

Initialize sequential processing of the Kalman filter.


	Parameters:

	oseries (pandas.DataFrame) – multiple time series










	
simulate(observation_matrix, method='smoother')

	Method to get simulated means and covariances.


	Parameters:

	
	observation_matrix (numpy.ndarray) – Observation matrix for projecting states.


	method (str, optional) – If “filter”, use Kalman filter to obtain estimates.
If “smoother”, use Kalman smoother. The default is “smoother”.






	Returns:

	
	simulated_means (list) – List of simulated means for each time step.


	simulated_variances (list) – List of simulated variances for each time step.
Variances are diagonal elements of simulated covariance matrix.



















	
metran.kalmanfilter.filter_predict(filtered_state_mean, filtered_state_covariance, transition_matrix, transition_covariance)

	Predict state with a Kalman Filter using sequential processing.


	Parameters:

	
	filtered_state_mean (numpy.ndarray) – Mean of state at time t-1 given observations from times
[0…t-1]


	filtered_state_covariance (numpy.ndarray) – Covariance of state at time t-1 given observations from times
[0…t-1]






	Returns:

	
	predicted_state_mean (numpy.ndarray) – Mean of state at time t given observations from times [0…t-1]


	predicted_state_covariance (numpy.ndarray) – Covariance of state at time t given observations from times
[0…t-1]















	
metran.kalmanfilter.filter_update(observations, observation_matrix, observation_variance, observation_indices, observation_count, state_mean, state_covariance)

	Update predicted state with Kalman Filter using sequential processing.


	Parameters:

	
	observations (numpy.ndarray) – Observations for sequential processing of Kalman filter.


	observation_matrix (numpy.ndarray) – observation matrix to project state.


	observation_variance (numpy.ndarray) – observation variances


	observation_indices (numpy.ndarray) – used to compress observations, observation_matrix,
and observation_variance skipping missing values.


	observation_count (numpy.ndarray) – number of observed time series for each timestep
determining the number of elements to be read in observation_indices.


	state_mean (numpy.ndarray) – mean of state at time t given observations from times
[0…t-1]


	state_covariance (numpy.ndarray) – covariance of state at time t given observations from times
[0…t-1]






	Returns:

	
	state_mean ([n_dim_state] array) – Mean of state at time t given observations from times
[0…t], i.e. updated state mean


	state_covariance ([n_dim_state, n_dim_state] array) – Covariance of state at time t given observations from times
[0…t], i.e. updated state covariance


	sigma (float) – Weighted squared innovations.


	detf (float) – Log of determinant of innovation variances matrix.















	
metran.kalmanfilter.kalmansmoother(filtered_state_means, filtered_state_covariances, predicted_state_means, predicted_state_covariances, transition_matrix)

	Method to run the Kalman smoother.

Estimate the hidden state at time for each time step given all
observations.


	Parameters:

	
	filtered_state_means (array_like) – filtered_state_means[t] = mean state estimate
for time t given observations from times [0…t].


	filtered_state_covariances (array_like) – filtered_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t].


	predicted_state_means (array_like) – predicted_state_means[t] = mean state estimate
for time t given observations from times [0…t-1].


	predicted_state_covariances (array_like) – predicted_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t-1].


	transition_matrix (numpy.ndarray) – State transition matrix from time t-1 to t.






	Returns:

	
	smoothed_state_means (numpy.ndarray) – Mean of hidden state distributions
for times [0…n_timesteps-1] given all observations


	smoothed_state_covariances (numpy.ndarray) – Covariance matrix of hidden state distributions
for times [0…n_timesteps-1] given all observations















	
metran.kalmanfilter.seqkalmanfilter(observations, transition_matrix, transition_covariance, observation_matrix, observation_variance, observation_indices, observation_count, filtered_state_mean, filtered_state_covariance)

	Method to run sequential Kalman filter optimized for use with numba.

This method requires numba to be installed. With numba, this method
is much faster than seqkalmanfilter_np. However, without numba,
it is extremely slow and seqkalmanfilter_np should be used.


	Parameters:

	
	observations (numpy.ndarray) – Observations for sequential processing of Kalman filter.


	transition_matrix (numpy.ndarray) – State transition matrix from time t-1 to t.


	transition_covariance (numpy.ndarray) – State transition covariance matrix from time t-1 to t.


	observation_matrix (numpy.ndarray) – Observation matrix to project state.


	observation_variance (numpy.ndarray) – Observation variances


	observation_indices (numpy.ndarray) – Used to compress observations, observation_matrix,
and observation_variance skipping missing values.


	observation_count (numpy.ndarray) – Number of observed time series for each timestep
determining the number of elements to be read in observation_indices.


	filtered_state_mean (numpy.ndarray) – Initial state mean


	filtered_state_covariance (numpy.ndarray) – Initial state covariance






	Returns:

	
	sigmas (numpy.ndarray) – Weighted squared innovations.


	detfs (numpy.ndarray) – Log of determinant of innovation variances matrix.


	sigmacount (int) – Number of elements in sigmas en detfs with calculated values.


	filtered_state_means (numpy.ndarray) – filtered_state_means[t] = mean state estimate
for time t given observations from times [0…t].


	filtered_state_covariances (numpy.ndarray) – filtered_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t].


	predicted_state_means (numpy.ndarray) – predicted_state_means[t] = mean state estimate
for time t given observations from times [0…t-1].


	predicted_state_covariances (numpy.ndarray) – predicted_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t-1].















	
metran.kalmanfilter.seqkalmanfilter_np(observations, transition_matrix, transition_covariance, observation_matrix, observation_variance, observation_indices, observation_count, filtered_state_mean, filtered_state_covariance)

	Method to run sequential Kalman filter optimized for use with numpy.

This method is suggested if numba is not installed.
It is, however, much slower than seqkalmanfilter combined with numba.


	Parameters:

	
	observations (numpy.ndarray) – Observations for sequential processing of Kalman filter.


	transition_matrix (numpy.ndarray) – State transition matrix from time t-1 to t.


	transition_covariance (numpy.ndarray) – State transition covariance matrix from time t-1 to t.


	observation_matrix (numpy.ndarray) – Observation matrix to project state.


	observation_variance (numpy.ndarray) – Observation variances


	observation_indices (numpy.ndarray) – Used to compress observations, observation_matrix,
and observation_variance skipping missing values.


	observation_count (numpy.ndarray) – Number of observed time series for each timestep
determining the number of elements to be read in observation_indices.


	filtered_state_mean (numpy.ndarray) – Initial state mean


	filtered_state_covariance (numpy.ndarray) – Initial state covariance






	Returns:

	
	sigmas (list) – Weighted squared innovations.


	detfs (list) – Log values of determinant of innovation variances matrix.


	filtered_state_means (list) – filtered_state_means[t] = mean state estimate
for time t given observations from times [0…t].


	filtered_state_covariances (list) – filtered_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t].


	predicted_state_means (list) – predicted_state_means[t] = mean state estimate
for time t given observations from times [0…t-1].


	predicted_state_covariances (list) – predicted_state_covariances[t] = covariance of state estimate
for time t given observations from times [0…t-1].
















Solvers

This module contains the  solver that is available for Pastas Metran.

All solvers inherit from the BaseSolver class, which contains methods to
obtain the object function value and numerical approximation of the
parameter covariance matrix.

To solve a model the following syntax can be used:

>>> mt.solve(solver=ps.LmfitSolve)






	
class metran.solver.BaseSolver(mt, **kwargs)

	All solver instances inherit from the BaseSolver class.


	
mt

	
	Type:

	Metran instance










	
objfunction(p, callback)

	Method to get objective function used by solver.


	Parameters:

	
	p (type required for callback function) – Parameters to be coverted by callback function into
proper type and format.


	callback (ufunc) – Function that is called after each iteration.
The parameters are provided to the func,
e.g. “callback(parameters)”.






	Returns:

	obj – Objective function value.



	Return type:

	float














	
class metran.solver.LmfitSolve(mt, **kwargs)

	Class for solving the model using the LmFit solver [LM].


Lmfit is basically a wrapper around the scipy solvers, adding some
functionality for boundary conditions.





	Parameters:

	
	mt (Metran instance) – 


	**kwargs (dict, optional) – All keyword arguments will be passed onto minimization method
from the solver.








Examples

>>> mt.solve(solver=ps.LmfitSolve)





References



[LM]
https://github.com/lmfit/lmfit-py/






	
solve(method='lbfgsb', **kwargs)

	Method to run solver and optimize parameters.


	Parameters:

	
	method (str, optional) – Name of the fitting method to use. The default is “lbfgsb”.


	**kwargs (dict, optional) – All keyword arguments will be passed onto minimization method
from the solver.






	Returns:

	
	success (boolean) – True if optimization routine terminated successfully.


	params (lmfit.Parameters instance) – Ordered dictionary of Parameter objects.



















	
class metran.solver.ScipySolve(mt, **kwargs)

	Solver based on Scipy’s least_squares method [scipy_ref].

This class is the default solver class in the Metran solve method.


	Parameters:

	
	mt (Metran instance) – 


	**kwargs (dict, optional) – All keyword arguments will be passed onto minimization method
from the solver.








Examples

>>> mt.solve(solver=ps.ScipySolve)





References



[scipy_ref]
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html






	
solve(method='l-bfgs-b', **kwargs)

	Method to run solver and optimize parameters.


	Parameters:

	
	method (str, optional) – Name of the fitting method to use. The default is “l-bfgs-b”.


	**kwargs (dict, optional) – All keyword arguments will be passed onto minimization method
from the solver.






	Returns:

	
	success (boolean) – True if optimization routine terminated successfully.


	params (lmfit.Parameters instance) – Ordered dictionary of Parameter objects.




















Plots

This module contains the Plot helper class for Metran.


	
class metran.plots.MetranPlot(mt)

	Plots available directly from the Metran Class.


	
decomposition(name, tmin=None, tmax=None, ax=None, split=False, adjust_height=True, **kwargs)

	Plot decomposition into specific and common dynamic components.


	Parameters:

	
	name (str) – name of oseries


	tmin (str or pd.Timestamp, optional) – start time, by default None


	tmax (str or pd.Timestamp, optional) – end time, by default None


	ax (matplotlib.pyplot.Axis) – axes to plot decomposition on


	split (bool, optional) – plot specific and common dynamic factors on different axes,
only if ax is None


	adjust_height (bool, optional) – scale y-limits of axes relative to one another, by default True,
only used when ax is None and split=True






	Returns:

	axes – list of axes handles



	Return type:

	list of matplotlib.pyplot.Axes










	
decompositions(tmin=None, tmax=None, **kwargs)

	Plot all decompositions into specific and common dynamic components.


	Parameters:

	
	name (str) – name of oseries


	tmin (str or pd.Timestamp, optional) – start time, by default None


	tmax (str or pd.Timestamp, optional) – end time, by default None






	Returns:

	axes – list of axes handles



	Return type:

	list of matplotlib.pyplot.Axes










	
scree_plot()

	Draw a scree plot of the eigenvalues.


	Returns:

	ax – plot axis handle



	Return type:

	matplotlib.pyplot.Axes










	
simulation(name, alpha=0.05, tmin=None, tmax=None, ax=None)

	Plot simulation for single oseries.


	Parameters:

	
	name (str) – name of the oseries


	alpha (float, optional) – confidence interval statistic, by default 0.05 (95% confidence
interval), if None no confidence interval is shown.


	tmin (str or pd.Timestamp, optional) – start time, by default None


	tmax (str or pd.Timestamp, optional) – end time, by default None


	ax (matplotlib.pyplot.Axis) – axes to plot simulation on, if None (default) create a new figure






	Returns:

	ax – plot axis handle



	Return type:

	matplotlib.pyplot.Axes










	
simulations(alpha=0.05, tmin=None, tmax=None)

	Plot simulations for all oseries.


	Parameters:

	
	name (str) – name of the oseries


	alpha (float, optional) – confidence interval statistic, by default 0.05 (95% confidence
interval), if None no confidence interval is shown.


	tmin (str or pd.Timestamp, optional) – start time, by default None


	tmax (str or pd.Timestamp, optional) – end time, by default None


	ax (matplotlib.pyplot.Axis) – axes to plot simulation on, if None (default) create a new figure






	Returns:

	axes – list of axes handles



	Return type:

	list of matplotlib.pyplot.Axes










	
state_means(tmin=None, tmax=None, adjust_height=True)

	Plot all specific and common smoothed state means.


	Parameters:

	
	tmin (str or pd.Timestamp, optional) – start time, by default None


	tmax (str or pd.Timestamp, optional) – end time, by default None


	adjust_height (bool, optional) – scale y-axis of plots relative to one another, by default True






	Returns:

	axes – list of axes handles



	Return type:

	list of matplotlib.pyplot.Axes
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